Seeding Clouds with Trust Anchors

Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakuamar, Trent Jaeger, and Patrick McDaniel
CCSW ’10
Hurdles to Cloud Adoption

• Clouds offer customers a platform for on-demand resources and reduced administrative effort

• However, fears of **data loss** and **security breaches** have stifled adoption by many businesses

• We propose increasing the **transparency** of cloud platforms to build trust in them
Uncertainty in Clouds

• Customers are concerned with:
 ▸ Host and VM integrity
 ▸ VM isolation / protection
 ▸ Data leakage

• Need to **verify** integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to **verify** integrity of those components
Uncertainty in Clouds

- Customers are concerned with:
 - Host and VM integrity
 - VM isolation / protection
 - Data leakage

- Need to **verify** integrity of those components
Uncertainty in Clouds

- Customers are concerned with:
 - Host and VM integrity
 - VM isolation / protection
 - Data leakage

- Need to **verify** integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to verify integrity of those components
Customers are concerned with:

- Host and VM integrity
- VM isolation / protection
- Data leakage

Need to verify integrity of those components
Uncertainty in Clouds

- Customers are concerned with:
 - Host and VM integrity
 - VM isolation / protection
 - Data leakage

- Need to **verify** integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to **verify** integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to **verify** integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to verify integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to **verify** integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to verify integrity of those components
Uncertainty in Clouds

• Customers are concerned with:
 ‣ Host and VM integrity
 ‣ VM isolation / protection
 ‣ Data leakage

• Need to **verify** integrity of those components
Cloud support for proofs

• Clouds offer a unique administrative environment for integrity measurement
 ‣ Physical security, internal PKI, consistent components
 ‣ Centralized administration over many systems

• Focus on using hardened / proven components
 ‣ Assured hypervisors (e.g., SEL4) and code
 ‣ Verifiable enforcement policies
Cloud Verifier

• We propose a **Cloud Verifier (CV)** mechanism to enable verification of cloud platforms by **proxy**
 ‣ **Verifiable** component in the cloud
 ‣ **Monitors the integrity of VM hosts using** a public integrity criteria
Cloud Verifier

• We propose a **Cloud Verifier (CV)** mechanism to enable verification of cloud platforms by **proxy**
 ‣ Verifiable component in the cloud
 ‣ Monitors the integrity of VM hosts using a public integrity criteria
Cloud Verifier

• We propose a Cloud Verifier (CV) mechanism to enable verification of cloud platforms by proxy
 ‣ Verifiable component in the cloud
 ‣ Monitors the integrity of VM hosts using a public integrity criteria
Cloud Verifier

• We propose a Cloud Verifier (CV) mechanism to enable verification of cloud platforms by proxy

 ‣ Verifiable component in the cloud

 ‣ Monitors the integrity of VM hosts using a public integrity criteria
Cloud Verifier

• We propose a Cloud Verifier (CV) mechanism to enable verification of cloud platforms by proxy
 ‣ Verifiable component in the cloud
 ‣ Monitors the integrity of VM hosts using a public integrity criteria
Customers using the CV

• CV then \textit{vouches} for integrity of a VM’s host using a signed public key
Customers using the CV

• CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

- CV then vouches for integrity of a VM’s host using a signed public key
Customers using the CV

- CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

• CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

- CV then **vouches** for integrity of a VM’s host using a signed public key

![Diagram showing CV, VM, Node Controller, and Storage with arrows indicating data flow and key generation]
Customers using the CV

CV then **vouches** for integrity of a VM’s host using a signed public key.
Customers using the CV

• CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

- CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

• CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

- CV then **vouches** for integrity of a VM’s host using a signed public key

![Diagram of CV, Node Controller, VM, and Storage verifying CV and integrity]
Customers using the CV

- CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

- CV then **vouches** for integrity of a VM’s host using a signed public key
Customers using the CV

- CV then **vouches** for integrity of a VM’s host using a signed public key

![Diagram of CV, Node Controller, VM, and Storage connections]

- CV vouches for the integrity of a VM's host using a signed public key.
- Form an authenticated connection with the VM.
- Authorize access to storage.
- Node Controller verifies integrity of the connection.
Transparency Challenges

• How can customers verify these proofs?
 ‣ Custom distributions
 ‣ Copious amount of details and systems

• How can this be done efficiently?
 ‣ Clouds operate at Internet scale
 ‣ Commodity trusted hardware is slow
Integrity Criteria

• Current integrity measurement approaches are very system configuration specific
 ‣ Difficult to assess arbitrary data and custom code
 ‣ Resolution of measurement is often insufficient

• Require an integrity criteria that focuses on integrity properties achieved by a system
 ‣ Establish a verifiable origin for data
 ‣ Leverage enforcement to minimize measurements
 ‣ Enable verifiers to compare requirements
Performance

• Constructed a testbed using Eucalyptus
 ‣ Configured nodes using network-based ROTI installation
• Attestations take ~1 second to produce
• CV generates asynchronous attestations
 ‣ Using an attested time server to provide nonces
 ‣ Handle over 7,000 requests per second
Further Challenges

• CV Scalability
• Enforcing customer security requirements
• Key revocation and remediation
Questions?

Joshua Schiffman (jschiffm@cse.psu.edu)
http://www.joshschiffman.org/
SIIS Laboratory (http://siis.cse.psu.edu)